107 research outputs found

    Tensile and charpy impact properties of irradiated reduced-activation ferritic steels

    Get PDF
    Tensile tests were conducted on 8 reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on steels irradiated to 26-29 dpa. Irradiation was in Fast Flux Test Facility at 365 C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15- 17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20,000 h at 365 C. Thermal aging had little effect on tensile properties or ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in upper-shelf energy (USE). After 7 dpa, strength increased (hardened) and then remained relatively unchanged through 26-29 dpa (ie, strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness (increased DBTT, decreased USE) remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels had the most irradiation resistance

    Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Get PDF
    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement will be reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture. In addition to irradiation hardening, neutrons from the fusion reaction will produce large amounts of helium in the steels used to construct fusion power plant components. Tests to simulate the fusion environment indicate that helium can also affect the toughness. Steels are being developed for fusion applications that have a low DBTT prior to irradiation and then show only a small shift after irradiation. A martensitic 9Cr-2WVTa (nominally Fe-9Cr-2W-0.25V-0.07Ta-0.1C) steel had a much lower DBTT than the conventional 9Cr-1MoVNb steel prior to neutron irradiation and showed a much smaller increase in DBTT after irradiation. 27 refs., 5 figs., 1 tab

    Effect of Normalizing Temperature on Creep Strength of 8Cr-W-V-Ta Oxide Dispersion Strengthened Steels

    No full text
    • …
    corecore